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1. Introduction

An important approach to the solution of PDEs is to seek a critical point of a functional, constructed so that the equa-
tion can be considered to be solved when the functional is minimized. The recent theory of Sobolev gradients [2] gives a
unified approach for such problems. Sobolev gradients have been used for ODEs [2,3] in a finite-difference setting, PDEs in
finite-difference [3] and finite-element settings [4], minimizing energy functionals associated with Ginzburg–Landau
models in finite-difference [5] and finite-element [6,7] settings, the electrostatic potential equation [8], nonlinear elliptic
problems [9], semilinear elliptic systems [10], simulation of Bose–Einstein condensates [11], inverse problems in elasticity
[12] and groundwater modelling [13]. [2] has a detailed analysis regarding the construction and the application of Sobo-
lev gradients. For a quick overview of Sobolev gradients, applications and some open problems in the subject we refer to
[14].

Sobolev gradients are also useful for preconditioning for linear and nonlinear problems. Sobolev preconditioning [15] has
been tested on some first order and second order linear and nonlinear problems and it is found comparable in terms of effi-
ciency and stability with other methods such as Newton’s method and Jacobi method. For differential equations with non-
uniform behavior on long intervals, Sobolev gradients have proved effective if we divide the interval of interest into pieces
and take a recursive approach [16]. Sobolev gradients have interesting applications in the field of geometric modelling [17].
It has been proved [17] that Sobolev gradient is a very useful tool for minimizing functionals that pertain to the length of
curves, curvatures, surface area etc. Recently, [18] have shown the possible applications of Sobolev gradient technique for
systems of Differential Algebraic Equations.

Sobolev gradients have been discussed in [1] as a method for approximating time evolution related to Ginzburg–Landau
functionals. In this article, we would give the equivalent algorithm in a finite-element setting.
. All rights reserved.
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It is found that the approach is efficient while, at the same time, the algorithm retains the simplicity of less efficient steep-
est descent methods. Results are reported for numerical experiments. All numerical experiments are carried out on an Intel
Xeon 3.2 GHZ dual processor machine with 2GB RAM.

2. Model A time evolution

The minimization of a Model A Ginzburg–Landau free energy functional
FðuÞ ¼
Z

x

u4

4
� u2

2
þ j

2
jruj2 ð1Þ
has been considered in [5]. The static and dynamical properties of this model have been extensively studied, primarily in
numerical work related to coarsening and growth of domains [19–21].

In the continuous case, the related Ginzburg–Landau time evolution is
ut ¼ �rFðuÞ; ð2Þ
which on the interior of the system is
ut ¼ u� u3 þr2u; ð3Þ
and this equation has been known for many years as the time-dependent Ginzburg–Landau (TDGL) equation, after the pair of
Russian physicists who first used it in connection with modelling superconductivity. TDGL equation is the kinetic equation
for the temporal evolution of a continuum field, which assumes the rate of evolution of the field is linearly proportional to
the thermodynamical driving force. The computation model based on this equation is also called phase field model. Phase
field simulation can predict quite beautiful patterns of microstructures of material. It has been widely applied to simulating
the evolution of microstructure by choosing different field variables. For example, continuum phase field models has been
employed to describe the pattern formation in phase separating alloys [22] and the nanoscale pattern formation of an
epitaxial monolayer [23].

The method suggested for evolving systems from one time to another in the primary reference for Sobolev gradients [2] is
as follows. Form a functional
/ðuÞ ¼ u� f þ dt
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where f represents the system at a time t and u represents the system at a time t þ dt . When this functional is minimized
sufficiently, the system is considered to have evolved to the next time step. We will follow this approach with the modifi-
cation that we consider the minimization of a functional
/ðuÞ ¼ jju� f þ dtðu� u3 þr2uÞjj2 ð5Þ
for a fully implicit scheme. So the problem is considered to be solved when /ðuÞ is smaller than some set tolerance. We sug-
gest another method.

We form an associated functional
GðuÞ ¼
Z

X
dt
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over some two or three-dimensional region X subject to Dirichlet boundary conditions and seek to minimize this. This func-
tional is a convex functional that guarantees global minima at rGðuÞ, a solution to the problem (3). The aim is to find the
gradient of a convex functional GðuÞ associated with the problem and use the gradient in steepest descent minimization pro-
cess to find the zero of the functional that is minima of GðuÞ and a solution to the original problem.

3. Gradients and steepest descent

The gradient rGðuÞ in L2ðXÞ ¼ H2
0ðXÞ (the space of square integrable functions on some two- or three-dimensional do-

main X) for some functional GðuÞ is defined by
Gðuþ hÞ ¼ GðuÞ þ hrGðuÞ;hi þ Oðh2Þ; ð7Þ
where h is a small test function.
The gradient rGðuÞ in (7) points to the direction of greatest increase of G in the function space L2 of square integrable

functions. So, one could seek to minimize G by moving one minimizing step in the direction �rGðuÞ, recalculating the gra-
dient, moving one minimizing step, etc.

1. Calculate rGðuÞ.
2. Update u by u! u� krGðuÞ where k is some fixed positive number.
3. Repeat until rGðuÞ is less than some set tolerance.
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A more sophisticated scheme would be to vary the step size k so as to optimize each minimization step but such line
search techniques are not discussed here. We desire to develop a very simple algorithm and then demonstrate its efficiency.

The CFL condition [24] implies a problem with the steepest descent approach in L2. When the grid is made finer or if we go
to higher dimensional version of the problem the step size k will have to be reduced.

4. Sobolev gradients

That steepest descent is inefficient is something well-known to numerical analysts. The philosophy of Sobolev gradients is
demonstrated in the way the cause of this inefficiency is viewed. Rather than abandoning steepest descent the gradient is
reconsidered. The gradient had been calculated in the space of square integrable functions L2ðXÞ ¼ H2

0ðXÞ with the standard
inner product
hu;vi ¼
Z

X
uv: ð8Þ
An alternative inner product to (8) is
hu;viS ¼ hu;vi þ hru;rvi: ð9Þ
The inner product (9) for the Sobolev space H2
1ðXÞ takes spatial gradients into account, unlike (8). The Sobolev gradient

rsGðuÞ satisfies
Gðuþ hÞ ¼ GðuÞ þ hrsGðuÞ;hi þ hrrsGðuÞ;rhi þ Oðh2Þ ð10Þ
for test function h. For our particular problem, we need to solve
Z
X
ðdtu3 þ ð1� dtÞu� f Þh�

Z
X
jdtru � rh ¼

Z
X
rsGðuÞhþ

Z
X
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in order to find the Sobolev gradients. Note that in the finite-element setting it is not necessary to find the L2 gradient first
and then find the Sobolev gradient next, as it is in a finite-difference setting [1].

The steepest descent algorithm in H2
1 is as follows:

� Calculate rsGðuÞ from (10).
� Update u by u! u� krsGðuÞ where k is some fixed positive number.
� Repeat until rsGðuÞ is less than some set tolerance.

In the case of Dirichlet boundary conditions, the value of u is fixed on the boundaries of the system and so we look for
gradients that are zero on the boundary of X. So one wishes to use not rGðuÞ but prGðuÞ where p is a projection that sets
values of test function h zero on the boundary of the system. We use Freefem ++ [25], a free software designed to solve par-
tial differential equations using the finite-element method. This software has the facility to define the gradient zero at the
boundary.

Thus we need to solve
p
Z
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ðdtu3 þ ð1� dtÞu� f Þh�

Z
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Z
X

PrGðuÞhþ
Z

X
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It is seen that when using the Sobolev gradient the step size k does not have to be reduced as the numerical grid becomes
finer and the number of minimization steps remains reasonable. At the same time the conceptual simplicity and elegance of
the steepest descent algorithm has been retained.

5. Numerical results

For the two-dimensional case, we let X be the circular disk centered at the origin of radius 10 with an oval region re-
moved that has border xðtÞ ¼ 8 cosðtÞ; yðtÞ ¼ 2 sinðtÞ with t 2 ½0;2p�. The initial state was u ¼ 0:0 and the Dirichlet condition
was that u ¼ �1 on the outer boundary and u ¼ 1 on the inner boundary on the boundaries. We let j ¼ 1 and time step
dt ¼ 0:95.

FreeFem++ requires one to specify the borders of the region and the number of nodes required on each border. The soft-
ware then creates a mesh. FreeFem++ solves the equations of the same type as (12) that determine the L2 and Sobolev gra-
dients. We did numerical experiments with M ¼ 20;40;80 and 160 nodes on each border. The system was evolved over 15
time steps. For each time step dt the functional defined by (6) was minimized using steepest descent steps with both L2 and
H2

1 until the infinity norm of the gradient was less than 10�6. The step size, number of steps and the CPU time are given in
Table 1.

For the three-dimensional case, we let X be the ball centered at the origin of radius 8. The initial state was u ¼ 2:0 with
Dirichlet boundary condition. We let j ¼ 1 and time step dt ¼ 0:95. The system was evolved over 15 time steps. For each



Table 1
Numerical results of steepest descent in L2;H

2
1 using dt=0.95 in the two-dimensional case.

k Iterations CPUs M Triangles

L2 H2
1

L2 H2
1

L2 H2
1

– –

2:0� 10�2 0.7 6026 205 83.1 2.9 20 88

4:0� 10�3 0.7 30,604 206 1504.0 9.7 40 350

7:0� 10�4 0.7 >96,591 207 >50400.0 45.0 80 1350

Table 2
Numerical results of steepest descent in L2;H

2
1 using dt ¼ 0:95 in the three-dimensional case.

k Iterations CPUs M

L2 H2
1

L2 H2
1

L2 H2
1

-

5:0� 10�3 0.9 903 31 26.8 0.98 8

1:0� 10�3 0.9 9266 43 3 704.1 14.31 16

2:2� 10�4 0.9 >5877 180 >9120.0 707.73 32
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time step dt the functional defined by (6) was minimized using steepest descent steps with both L2 and H2
1 until the infinity

norm of the gradient was less than some set tolerance.
We used the free finite-element software FreeFem3d [25] for this problem. FreeFem3d requires one to specify the number

of nodes on each axis. The software then creates a mesh. We did numerical experiments with M ¼ 8;16 and 32 nodes on each
axis. A record was kept of the total number of minimization steps, the largest value of k that can be used, and the CPU time in
Table 2.

We see that as the mesh becomes finer with increasing M, the step size k needs to decrease drastically whereas this is not
the case for the Sobolev gradient and so the number of iterations required does not increase substantially either. In the two-
dimensional case, for M ¼ 80 the minimization of time evolution Model A was not finished at 96,591 steps using the L2 gra-
dient but concluded after 207 steps using the Sobolev gradient. At M ¼ 160 the L2 gradient is almost divergent. Similarly, in
the three-dimensional case, for M ¼ 32 the minimization of time evolution Model A was not finished at 5877 steps using the
L2 gradient but concluded after 180 steps using the Sobolev gradient.

6. Summary and conclusions

A scheme has been developed for time evolution model A Ginzberg–Landau functionals based on the Sobolev gradient
technique in a finite-element setting. The Sobolev gradient technique is computationally more efficient than the usual steep-
est descent method as the mesh is made finer, the dimension of the problem is increased.

The FreeFem++ software was quite easy to use and the code is only a few pages long. These problems have previously
been attempted using Sobolev gradients in a finite-difference setting [1] and we have shown here that the Sobolev gradient
approach has advantages in a finite-element setting.
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